大数据时代:学习和教育的未来
大数据时代:学习和教育的未来 ——专访牛津大学教授维克托·迈尔–舍恩伯格 作者:郜云雁
维克托·迈尔–舍恩伯格,现为英国牛津大学互联网研究所教授,是大数据领域公认的权威,也是最早洞见大数据时代发展趋势的数据科学家之一。维克托·迈尔–舍恩伯格的力作——《与大数据同行:学习和教育的未来》去年出版以来,受到国内教育界的广泛关注,并荣获2015年度“影响教师的100本书”之TOP10图书。
书中,作者指出小数据时代的教育主要面临两个障碍:一是优质教育资源分配受到时空的限制;二是获取和分析教育过程中的数据成本巨大。因此小数据教育通常呈现为三类特征:一是教育以大规模批量进行;二是难以评价学生的学习过程,而只能评价学习结果;三是教学方案主要依靠教师的个人经验制定。
大数据改善学习的三大核心要素则是:反馈、个性化和概率预测。在此基础上,将带来学习的三大改变:能够随时收集学习中的双向反馈数据;可以真正满足每个学生的个体需求,而不是为了一组类似的学生定制的个性化学习;可以通过概率预测优化学习内容和学习方式。
在这一过程中,学校和教师的功能将发生彻底改变,学校将转变成为学生交流和沟通的社会化场所。教师则不再需要照本宣科地讲课,而是作为学生和学习系统的重要连接者,倾听学生的教育和学习需求,组织学生进行各种深入的讨论和交流。
近日,迈尔–舍恩伯格在北京访问,中国教育新闻网“围绕大数据时代的学习和教育”专访了迈尔–舍恩伯格教授。
大数据将带来学习的三大核心变化:反馈、个性化和概率预测
中国教育新闻网:大数据时代对于学习者到底意味着什么?
多邻国通过大数据发现,语言教学手段有效与否,取决于学习者的母语以及他们将要学习的语言。另外,多邻国还发现了所谓“数据尾气”(data exhaust)现象,即由人们与网站之间的互动中衍生的副产品:如熟练掌握一门语言的某一方面需要多长时间、最合适的习题量是多少、落下几天课程进度的后果是什么,等等。
中国教育新闻网:这些数据在传统教学中确实很难收集。
迈尔–舍恩伯格:可汗学院和多邻国的教育实践,为我们展示了大数据时代的教育前景,也反映了大数据改善学习的三大核心要素:反馈、个性化和概率预测。过去,人们针对语言学习方法的实证研究数量很少,比如很多理论主张先教形容词,再教副词,但是几乎没有实证数据支撑该主张。多邻国的出现,使这样的研究成为可能,也使人们可以通过数据分析,进一步了解学习者是如何学习的。
多邻国的教学模式和商业模式也非常有意思,它要求人们在同一时间翻译一些较短的词组,也可以评价或修订他人的翻译。而它所提供的翻译样本,其实是从翻译公司那里获得的真实句子,因此公司能够从中获取报酬。一旦有足够的学习者能够翻译或验证特定的词组,系统就会接受他们的译文,并收集所有零散的句子,将其整合到完整的文档之中。因此,学习者可以免费获得外语学习指导,同时创造出具有经济价值的回报。这种赢利模式在过去是难以想象的。
中国教育新闻网:大数据时代的学习反馈,与传统学校中的学习反馈有何本质不同?
在小数据时代,我们学习的方式和目的往往是为了通过考试,而在大数据时代,我们可以实现通过这些错误来理解这些错误,并最终改进这些错误。多邻国的实践就是最好印证。
当学生能以最适合自己的步调和方式进行学习时,即使那些看起来最没有能力的“差生”,也可能在最终表现上超过优等生。
迈尔–舍恩伯格:实现因材施教是人类教育的理想。大数据时代,学习者将可以获得一种定制的适合自身的学习安排。比如,在纽约地区有一个“个人的学校”数学项目,每个学生都拥有个人的“播放列表”,通过相关算法分析个人需求,学生可以获得为其定制的每日习题集。
再比如,有一个名为“半岛大桥”(Peninsula Bridge)的暑期班项目,曾使用可汗学院的数学课程教授来自贫困社区的中学生。有一个女孩一直学得很慢,成绩也一直垫底。但是过了一段时间,她竟然像开了窍一般地飞速进步,到课程结束时成绩已排名第二了。学习记录显示,她曾长时间在某个学习环节徘徊,而一旦掌握了这个核心概念后,她就开始突飞猛进了。可见,当学生能以最适合自己的步调和方式进行学习时,即使那些看起来最没有能力的“差生”,也可能在最终表现上超过优等生。
迈尔–舍恩伯格:人们通常不太愿意接受概率。其实,我们一直都生活在概率的世界里,只是没有认识到它。通过大数据分析,我们可以进行更准确的预测,并进行更有效的干预。比如,我们可以不再简单地要求学生暑假时补习数学,而是建议他进行2周的二次方程集中课程学习。
另外一个需要转变的观念是:探寻“是什么”而非“为什么”。过去我们更强调探寻事物的因果关系,而现在我们通过大数据看到的往往是相关关系。对相关关系意识的确立,是具有挑战性的。因为深层的研究显示,通常我们对因果关系的快速直觉往往是完全错误的。
大数据推动教育决策更准确高效
在大数据出现之前,大多数教育政策都是在缺乏实验数据的情况下制定的。
中国教育新闻网:有了大数据的帮助,教育决策是否会更准确高效?
迈尔–舍恩伯格:几乎可以肯定,在大数据出现之前,大多数教育政策都是在缺乏实验数据的情况下制定的。我们的教育决策往往是非常主观、甚至是“拍脑袋”产生的,有一些最基本的原理可能都未曾验证过。比如,今天大多数学校的日程和时间安排,还遵循着农耕时代的习惯,人们甚至没有思考过学生是否真的在这个时间段进行学习最有效。
学校和教师不会被取代,但是其职能将会发生改变。学校将转变成学生进行社会化交往的场所,而教师则是重要的组织者。
想象力永远比知识本身重要
由人类的智慧、独创性、创造力造就的理念,这是大数据无法分析预测的。要知道,想象力永远要比知识重要。
中国教育新闻网:您提到,大数据不仅会改变学习的方式,也会改变学习的内容。
当然,我们也要继续重视那些数据不能解释的事物:由人类的智慧、独创性、创造力造就的理念,这是大数据无法分析预测的。要知道,想象力永远要比知识重要。
迈尔–舍恩伯格:这种情况的出现,将是未来所有变化中最有趣的事情。因为所有人都会认为,大数据的应用对那些顶尖级学校最有帮助。但是,让我们看看事实如何。那些世界名校真正为学生做了些什么呢?他们挑走了最好的学生,教起来当然既容易又简单。不过,如果只教最好的学生,我们又何必对这样的名校趋之若鹜呢?
要让我来为自己的孩子选学校,我将更看重学校会给孩子带来何等提升。我会选择能给孩子带来最大变化的学校,从入学到毕业,孩子能经历最大的变化与提升,这才是最好的学习过程。哈佛大学的学生从入学到毕业一直都最优秀,学校不需要替他们操太多心,也未必给他们带来多少提升。
|
(作者:中国教育新闻网记者郜云雁) 来源:中国教育新闻网